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We analyze the source of the self-force errors in the node-centered adaptive-mesh-refine-
ment particle-in-cell (AMR-PIC) algorithm and propose a method for reducing those self-
forces. Our approach is based on a method of charge deposition due to Mayo [A. Mayo,
The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM
Journal of Numerical Analysis 21(2) (1984) 285–299] that can reduce the self-force error
to any specified degree of accuracy.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Particle-in-cell (PIC) methods [4] are often used to solve the Vlasov–Poisson equations for collisionless kinetic problems
arising in plasma physics and astrophysics. In this approach, the distribution function is approximated using a particle rep-
resentation, which is viewed mathematically as a sum of smoothed delta functions in phase space. The forces on particles are
computed using a finite-difference or spectral approximation to the Poisson equation. Traditionally, the grids used for the
Poisson calculation are uniform rectangular grids. In the absence of irregular geometries, FFT methods are used to solve Pois-
son’s equation for the potential induced by charges interpolated from the particles to the grid points. The gradient is com-
puted from that potential on the grid and interpolated to the particle locations. In the case where the boundary includes
complex conducting surfaces, finite-difference approximations on rectangular grids are used, combined with cut-cell meth-
ods for the irregular Dirichlet boundaries and multigrid iteration for the Poisson solver.

For many problems, the replacement of a uniform rectangular grid by structured adaptive mesh refinement (AMR) is an
attractive option [9,8]. Particles are often localized to a small subset of the physical domain and the use of an AMR grid that
maintains a fixed number of particles per cell will improve both the efficiency and accuracy of the method. However, it has
been noted [9] that such AMR-PIC algorithms can suffer from the presence of large contributions to the force induced by a
particle on itself in the neighborhood of refinement boundaries. In contrast, it is straightforward to design uniform-grid ver-
sions of PIC that do not suffer from spurious self-forces. Most of the AMR-PIC algorithms currently in use either ignore the
problem, or use Poisson solvers that impose a non-standard form for the matching conditions at coarse-fine boundaries that
has the potential for a significant loss of accuracy.

In this paper, we analyze the source of the self-force errors in the AMR-PIC algorithm in [9] and propose a method for
reducing those errors. Our approach is based on a method of charge deposition due to Mayo [5] that, in the present setting,
can reduce the self-force error to any specified degree of accuracy. In practice, we only use this charge deposition algorithm
for particles near refinement boundaries, where the errors are largest.
. All rights reserved.
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2. Uniform-grid PIC

We want to compute an approximation to the force field induced by a charge distribution in free space.
uðxÞ ¼
Z

RD
Gðjx� yjÞqðyÞdy; ~E ¼ �ru; ð1Þ

GðrÞ ¼ � 1
2p

logðrÞ if D ¼ 2; GðrÞ ¼ � 1
4pr

if D ¼ 3:
A particle representation of this charge distribution is specified in terms of a collection of particle positions and charges,
ðxk; qkÞ
� �

;qðxÞ �
P

kqkdðx� xkÞ. The particle-in-cell method for computing ~Ek �~EðxkÞ is given as follows.

(1) Interpolate the particle charges onto the grid.
qh
i ¼

X
k

qk

hD W i� xk

h

� �
; ð2Þ

where i 2 ZD and h is the mesh spacing.

(2) Compute grid-based approximation to the convolution integral in (1) and evaluate the field gradient on the grid using

symmetric finite differences.
uh
i ¼

X
j

qh
j Gh

i;j;G
h
i;j � Gðjih� jhjÞ; ð3Þ

Eh
d;i ¼

X
s

as uh
iþs �uh

i�s

� �
: ð4Þ

The approximation to the Green’s function Gh is typically computed using a fast Poisson solver, with the free-space
boundary conditions represented using FFTs and Hockney domain-doubling, or with the James–Lackner algorithm,
that represents free-space boundary conditions by computing an appropriate Dirichlet boundary conditions using
boundary convolutions (for a discussion of free-space boundary conditions, see [7]).
(3) Interpolate field gradient to particle locations
~Ek ¼
X

i

Wðx
k

h
� iÞ~Ei ð5Þ
Here, the function W used to interpolate between particles and grids is assumed to be an even function of its argu-

ments. A simple choice is given by

WðzÞ ¼
YD

d¼1

maxð1� jzdj;0Þ ð6Þ

The self-force induced by a single particle ðx0; q0Þ can be easily computed from this algorithm.

E0
d ¼

q0

hD

X
s

as

X
i;j

W i� x0

h

� �
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x0

h
� j
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� 	
ð7Þ
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s
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� j
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h
� j� sð Þ

� �
Gh

i�s;j�s

� � !
ð8Þ
Clearly, this sum vanishes if Gh
i;j ¼ Gh

i�s;j�s i.e. if Gh is translation-invariant. This is an exact relation for discretizations of
G obtained from the Hockney construction and is true to a high degree of accuracy for finite-difference discretizations
using James–Lackner.

Finally, one can define uniform-grid PIC methods for other boundary conditions by replacing the free-space approximate
Green’s function in (1) by one that satisfies the requisite boundary conditions, with the potential uh computed using fast
solvers. In that case, there is a nontrivial self-force induced by the effect of the boundaries on the field. Nonetheless, there
is a well-defined notion of the error in the force induced by a single particle on itself. On uniform-grids, the error in the self-
force of a single particle for such boundary conditions is OðhpÞ, where p is the order of accuracy of the discretization of the
Laplacian.
3. An AMR-PIC algorithm

We define our locally-refined grid in terms of a nested hierarchy of unions of rectangles, following the approach in [6]. We
define a hierarchy of mesh spacings hl; l ¼ 1 . . . lmax, with hl ¼ rlhlþ1; rl > 1 an integer. Then Xl is a union of discrete node-cen-
tered rectangles in RD.
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Xl � fihl : i 2 ZDg ð9Þ

Xl � PðXlþ1Þ; Pðihlþ1Þ ¼
i
rl


 �
hl: ð10Þ
We also define the points in our hierarchy where the finite-difference approximation to the Laplacian that we will use is
defined.
Xl
valid ¼ fp 2 Xl : p� edhl 2 Xl;d ¼ 1 . . . Dg �Xlþ1

valid; ð11Þ
Xvalid ¼

[
l

Xl
valid; ð12Þ
where ed denotes the unit vector in the d direction. Finally, we assume that the various levels in the hierarchy satisfy the
following proper nesting conditions, in order to simplify the bookkeeping in our discretization methods and to make certain
that the values required for the finite-difference approximations are available in Xvalid.

� Grids on level l cover the geometric region in space identical to that covered by a subset of Xl�1.
IðPðXlÞÞ ¼ Xl ð13Þ
IðRÞ � fðirl þ sÞhlþ1 : i 2 R; 0 6 sd 6 rl � 1g; R � Xl ð14Þ
� All points on the boundary of Xl are separated from any point on the boundary of Xlþ1 by at least a distance 2hl in every
coordinate direction.

We define the generalization of the 2Dþ 1-point discretization of the Laplacian on this locally-refined grid hierarchy to be
ua : Xvalid ! R; ð15Þ

DaðuaÞp ¼
1

ðhlÞ2
2Dua

p �
X
�

XD

d¼1

~ua
p�edhl

 !
; p 2 Xl

valid; ð16Þ
where ~ua is an extension of ua to Xl obtained by interpolating values at the points Xl �Xvalid; for details, see [6].
To generalize the uniform-grid PIC algorithm described above to AMR grids, we want to think of the AMR solution algo-

rithm in terms of convolution with a discrete Green’s function and find a charge deposition/field interpolation method for
which the self-force expression corresponding to (8) vanishes. Since the AMR grids consist of unions of rectangular patches,
a natural choice would be to apply the uniform-grid formula corresponding to the local rectangular grid spacing at the loca-
tion of the particle. This fails for two reasons. The first is that not all of the nodes surrounding a rectangular grid cell are in
Xvalid (Fig. 1). To accomodate that problem, we can deposit the charge on the grid corresponding to the finest level such that
all the corners of the cell containing the particle are in Xvalid and then use only the potential at that level of refinement for
interpolating the electric field. In that case, we obtain the expression for the self-force given in (8). However, this is not
sufficient, because the discrete Green’s function corresponding to the AMR discretization of the Laplacian given above is
not translation-invariant, so that the cancellation in (8) does not occur. For grid points that are sufficiently far away from
refinement boundaries, the discrete Green’s function fails to be translation-invariant by terms that are Oðh2Þ. Thus for par-
ticles located in such regions, we obtain a level of self-force that converges to zero with the mesh spacing and in practice
yields an acceptable level of error. However, for points near to refinement boundaries, the discrete Green’s function fails
to be translation-invariant by terms that are Oð1Þ relative to the mesh spacing, leading to the large self-force contributions
described in [9].

Our remedy for this problem is to modify the charge deposition algorithm in the neighborhood of refinement boundaries,
using the approach in [5]. In this approach, the charge at the grid points surrounding the cell are all convolved with a discrete
kernel corresponding to the AMR Poisson operator described above applied to the analytic Green’s function evaluated at grid
points. The kernel is truncated to be zero within a few mesh spacings of the particle, since the Green’s function is harmonic
away from the charge. The resulting discrete Green’s function approximates the analytic Green’s function and as such is
more nearly translation-invariant, leading to the cancellations required in (8) to reduce the self-force to acceptable levels.

The AMR-PIC algorithm based on this approach can be specified as follows:

(1) Interpolate the particle charges onto the grid. Find the smallest hl such that xk 2 ½p0;p0 þ uhl	; p0 2 Xvalidðu is the vec-
tor whose entries are all 1’s) and
Sk ¼ p0 þ vhl : vd ¼ 0;1f g � Xvalid ð17Þ
fs� edhl : s ¼ Sk;d ¼ 1 . . . Dg � Xvalid ð18Þ

These conditions are guaranteed to hold for some level l because of our proper nesting conditions. We define

Rk
p ¼

qk

hD
l

W
p� xk

hl

� �
; p 2 Sk ð19Þ



Fig. 1. AMR-PIC near a grid refinement boundary. The particle location is indicated by the red diamond, and the points in Xvalid are indicated by circles (both
filled and open). The grid location indicated by the square in this figure is computed by interpolation from the points in Xvalid , rather than by solving a
difference approximation to Poisson’s equation at that point. In particular, there is no right-hand side defined at that point. Consequently, we distribute the
charge from the particle to the four grid points in Xvalid on the coarse grid adjacent to the particle, indicated by the filled circles. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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and Rk
p ¼ 0 otherwise, where W is given by (6). We then define

qa;k
p ¼

X
q2Xvalid

wk
p;qRk

q;q
a
p ¼

X
k

qa;k
p ; p 2 Xvalid ð20Þ

If the particle position xk is sufficiently far away from any refinement boundary, we set wk
p;q ¼ dpq, i.e. qa;k

p ¼ Rk
p. (we

will give a precise description of the condition below). Otherwise,

wk
p;q ¼ DaGp� �

q if jðDaGpÞqjP g max
q0
jðDaGpÞq0 j ð21Þ

and wk
p;q ¼ 0 otherwise. Here, Gp

q ¼ G maxðjp� qj;hlÞð Þ and g < 1 is an adjustable parameter that controls the level of
self-force.
(2) Compute the grid-based approximation to the convolution integral in (1) and evaluate the field gradient on the grid
using symmetric finite differences. We solve
Daua ¼ qa on Xvalid ð22Þ

using some form of infinite-domain boundary conditions at the coarsest level. We then compute the gradient field
using second-order finite differences.

Ea
d;p ¼ �

1
2hl

ua
pþedhl

�ua
p�edhl

� 	
ð23Þ
(3) Interpolate field gradient to particle locations.
~Ek ¼
X
p2Sk

~Ea
pW

xk � p
hl

� �
ð24Þ

By (18), we need the values of ~Ea
p only at points where the stencil is contained in Xvalid.
Finally, we must specify the rule by which we use this more elaborate charge deposition algorithm. If xk is contained in
the region in space defined by Xl that is also not covered by the region defined by Xlþ1, then we use (21) provided that
distðxk; @XlÞ < Clowhl or distðxk; @Xlþ1Þ < Chighhl; ð25Þ
where the distance function is defined using the max norm.
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In the special case of a single particle, the self-force on the particle is given by the same formula as in the uniform-grid
case.
E0
d ¼

q0

hD
l

1
2hl

X
p;q

W
p� edhl � x0

h

� �
W

q� x0

h

� �
Ga;p

q �
X
p;q

W
q� edhl � x0

hl

� �
W

p� x0

hl

� �
Ga;p�edhl

q�edhl

 !
; ð26Þ
where the discrete Green’s function Ga is given as the solution to
DaGa;p� �
q ¼ w0

p;q: ð27Þ
The points at which the summands in (26) are nonzero are all contained in Xvalid
T

Xl, so that the derivation is the same as

in the uniform-grid case. If g ¼ 0 in (21), then Ga;p ¼ Gp the grid so that Ga;p�edhl
q�edhl

¼ Ga;p
q and the self-force goes to zero. Since

the Green’s function is harmonic away from the charge, Da applied to the Green’s function evaluated at grid points is exactly
the truncation error of the discretized operator, which decays as a function of the distance of the charge. Thus choosing a
small, but nonzero g in (21) leads to an potential that differs by a small amount from the Green’s function evaluated at grid
points, which leads to a reduced self-force. On the other hand, we find that, for choices of g that provide a significant reduc-
tion of the self-force, there are actually only a small number of nonzero weights in the neighborhood of p, making the cost of
computing the convolution in (20) small.

The present algorithm differs from the AMR-PIC algorithm discussed in [9], in that the latter sets qa;k
p ¼ Rk

p. The corre-
sponding discrete Green’s function has large deviations from translation invariance, leading to large self-forces. Our ap-
proach for reducing this error leads to an algorithm for charge deposition is more expensive than that given in [9].
However, the self-forces fall off rapidly with the distance of the particle from refinement boundaries, so that the simpler
charge deposition algorithm used there can be applied away from those boundaries, with the more complicated one de-
scribed here used only for a small subset of the particles. In addition, the convolution coefficients wk

p;q are the same for
all the particles whose bins Sk are the same. Thus the calculation can be organized to sum the initial deposition (19) for
all the particles in the same bin and then apply the convolution (20) to the sum. Since there are typically at least several
particles per bin, this makes the increase in the number of operations over the standard charge deposition algorithm even
smaller.
4. Results

We compare the accuracy of the algorithm presented here with that of a baseline AMR-PIC algorithm on a series of single-
particle tests [9]. In all of these tests, we compute the solution using algorithm described in [9] as well as with the algorithm
described here. The AMR Poisson discretization is given by that in [6] for two AMR levels, with a factor of 2 refinement be-
tween the coarse and fine level. In all but the last example, the coarse grid covers the entire domain, which is the unit square
½0;1	2, with the fine gird covering the subdomain ½:25; :75	2. Thus the number of coarse grid points in each direction is equal
to the number of fine grid points in each direction and we will denote both by N þ 1. For the case of free-space boundary
conditions, we compute a Dirichlet boundary condition on the domain boundary using the analytic Green’s function for
the particle. The value for g in all of the calculations performed here is .3, with Clow ¼ 3;Chigh ¼ 1.

In the first series of tests we examine the self-force on a single particle with unit charge in free space generated by the old
and new algorithms, computed as a function of the location of the particle. In Figs. 2 and 3, we show a scatter plot of the force
at the particle locations corresponding to grid points, as a function of the distance to the refinement boundary. In this case,
the self-force is entirely due to the charge deposition, since there is no interpolation error. Away from the refinement bound-
aries, we are using the same charge deposition algorithm (19), so that the answers agree in that region. In addition, at any
fixed distance away from the boundary, the self-force error is approaching zero quadratically in the mesh spacing, while in
the neighborhood of the boundary both algorithms are showing a self-force error that is Oð1Þ relative to the mesh spacing.
However, the present algorithm reduces that Oð1Þ error by more than two orders of magnitude. We emphasize that we can
reduce the self-force as much as we wish by reducing further the value of the parameter g , at the expense of increasing the
cost of depositing the charge.

Next, we look at the error in the far field of the expression
Z
@B

~E 
 n̂dA ð28Þ
which, according to Gauss’ law, should be equal to the total charge contained in the domain B. The possibility for large errors
in this expression are specific to the node-centered method used here to discretize Poisson’s equation. In contrast, the
method in [8] does not generate large errors for charges well-separated from @B since the discretization satisfies a discrete
form of Gauss’ law. In Figs. 4 and 5 we show a scatter plot of the errors in (28) for particles located at grid points, where the
domain B is the box ½:125; :875	2 and the integral is replaced by a second-order accurate quadrature using the values for ~E



Fig. 2. Plot of self-force at grid points for a single particle placed at a point in Xvalid , as a function of the distance of the point to the refinement boundary,
N ¼ 32. The values for the baseline method are plotted as red triangles, and the values for the new method plotted as blue circles. Here and in what follows,
the refinement boundary is indicated by a dotted line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Same as Fig. 2, but with N ¼ 64.
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computed at grid points by the algorithm. As before, we see a reduction by two orders of magnitude in the error for particles
near the refinement boundary and quadratic convergence in the mesh spacing for particles a fixed distance away from the
boundary.



Fig. 4. Plot of error in (28) for a single particle placed at a point in Xvalid , as a function of the distance of the point to the refinement boundary, N ¼ 32. The
values for the baseline method are plotted as red triangles, and the values for the present method plotted as blue circles. The refinement boundary is
indicated by a dotted line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Same as Fig. 4, but with N ¼ 64.
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In Figs. 6 and 7 we compare the self-force errors for particles not located on grid points. Again, we see a reduction in the
error by two orders of magnitude, thus demonstrating that the reduction in the error is preserved by the interpolation step.
To obtain this result, it is essential to impose the conditions (17) and (18). Otherwise, the error in interpolating the potential
to non-valid points introduces large self-force errors.



Fig. 6. Plot of self-force on single particles, as a function of particle location, near the refinement boundary. Baseline method, N ¼ 32.

Fig. 7. Plot of self-force on single particles, as a function of particle location, near the refinement boundary. New method, N ¼ 32. Note the change in the
scale of the dependent variable.
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In Figs. 8 and 9 we show the calculation of the particle trajectories for a particle in conducting box starting at rest from the
point ð:3;0Þ. The conducting walls induce a force on the particle, causing it to move towards the wall. When the particle
reaches the wall, we apply an elastic reflection boundary condition. The particle dynamics are computed using a standard
leapfrog method for integrating the ODEs, with the electric field computed using either the baseline method or the present
method. Our results for the baseline method reproduce those in [9], with the large self-force error causing the particle to stay
on one side of the refinement boundary. The reduction in the self-force error in the present method causes the particle to
accelerate correctly as it crosses the refinement boundary. In this case, the conducting boundary induces a self-force on
the particle, causing it to move. However, the error in the self-force in the baseline method due to the refinement boundary
is so great as to bring the particle to a halt at that boundary. By using the present algorithm, we can reduce the self-force so
that the dynamics of the single particle are correct.



Fig. 8. Plot of the x-component of a single particle trajectory as a function of time, for N ¼ 32. Red is the baseline method, blue is the new algorithm. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Same as Fig. 8, but with N ¼ 64.
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Finally, in Fig. 10, we show the results of a calculation involving two particles. In this case, the base level grid is 64� 64,
with the region fx < :5g is refined by a factor of two. The particles are placed initially at the points ð:3; :5Þ and ð:7; :5Þ. The
exact solution for this problem consists of the particles oscillating symmetrically about the point ð:5; :5Þ along the line
fy ¼ :5g. The results show that the present method more nearly preserves the symmetry of the exact solution than the base-
line algorithm.



Fig. 10. Plot of the particle trajectories of the two-particle problem as a function of time, for N ¼ 64. Red is the baseline method, blue is the new algorithm.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusions

The method presented here addresses the issues raised in [9] regarding the use of AMR-PIC for Vlasov–Poisson. Perhaps
the most important result is the control of the error in the far field represented here by the error in Gauss’ law. The errors in
the far field are global, with contributions from all of the particles near refinement boundaries, it is much more important
that we have a mechanism for controlling such errors. The present method provides such a mechanism.

The results here provide a starting point for the design of a general method for plasma physics and astrophysics simula-
tions. Some of the issues still to be addressed include the determination of robust choices for the numerical parameters, such
as g and the distance to the refinement boundaries at which one changes charge deposition methods. For example, it may
well be the case that these parameters will need to change as a function of the local mesh spacing. Another issue is the use of
these ideas the algorithm in [8], which is based on a finite-volume discretization of the Laplacian. In that case, the stencil for
interpolating the forces to particles cannot be forced to automatically have the cancellations required near refinement
boundaries as was done here, and another approach, such as one based on the ideas in [2] will need to be employed. It is
also possible to use AMR Mehrstellen discretizations [1,3] of the Laplacian. When these operators are applied to the Green’s
function as in (21), the magnitude of the weights decays more rapidly as a function of the distance from the charge than is
the case for the standard ð2Dþ 1Þ point operator [2]. This leads to smaller stencils for the convolution operator to obtain a
given level of accuracy.
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